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INTRODUCTION.

In airplane performance estimates the fuel load is given usually in terms of & quantity
sufficient for a certain number of hours of motor consumption at full throttle. In & weight-
carrying machine more useful load can, of course, be carried as tho fuel load required to altain
the objective is diminished.

It becomes, therefore, of practical interest. to cxamine ithe relations between these loads
in greater detail than usual.

A machine can fly high or low, at maximum speed or at most economical speed, or at
most economical power consumption. It is not at all evident a priori which of these or what
combination of them is best under given conditions. The following study was primarily made
to determine the conditions necessary to attain a given objective with the maximum bombing
load and return.

It is, of course, evident that the calculations and theory as applied to bombing purposcs
will apply equally well for commercial load carrying purposes. The. results aro also directly
applicable to ‘the interesting questlons of long distance flights, across the oceans or for pur-
poses of exploration.

The investigation was made by two independent methods, one involving the usual per-
formance estimate methods, the other based upon theoretical considerations.

As a specific example the data on an 800-horsepower, 15,000-pound bombing machine was
used, but the method is applicable with slight variations to any machine.

6
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' PART L

NUMERICAL ANALYSIS.
By J. G. Corrrr.

The essential data for the specific machine used in the calculations are given in Table 1.
The total wing and parasite resistances were computed for assumed total weights of 15,000,
13,000, 11,000, 9,000, and 7,000 pounds respectively The total resistance and required horse-
power curves were then plotted against speed in the usual manner. See Table I and Fig. 1.

TasLe I.—Summary of total resisiances for a machine with a variable load. Area of wing=1,875 square feet.

g
Biplane I Biplane Wing Total ‘ -
, . Speed in | Monoplane Ig Monoplane; K /K.= | resistence | Larasite | poqtanee | Required
Welght and wing loading. Mp P.H. | KyX10% .SSmonoE, %x. Smono | =W/Bip. re;[slti.once wi.nxa' horse-
X101, KyKz | (LD 101 parasi power. )
- . Pounds. Pounds. Pounds, L R
70.0 19.2 16.3 16.2 1:;:8 1,090 809 1,609 318 _ o
wgw o o s ponar | | WE | BE) o mr) oo ) s @) bw)
SQUATEI00L.. e e woervacnnoens ! 100.0 9.40 2.0 19.6 18.7 29! | 1,151 2,050 547
i 110.0 1.88 6.6 16.8 4.3 } . 1,00 ° 1,400 450 Ti9 o
. | 60.0 22.6 19.2 2.3 7.9 Les! . 415 2,118 339 -
' 70.0 16.6 14.1 19.8 16.8 778 600 1,382 a5 :
13,000 pounds or 6.92 pounds per : 80.0 12.7 10.8 21.8 18.3 mn2 735 1,437 306 R
5QUATe f00t. ..eveereeemenacnans! 0.0 10.0 8.55 20.5 17.4 748 937 1,658 104 -
i 100.0 8.15 ‘8.9 17.3 14.7 1,151 2,085 543
I 110.0 6.72 5.71 16.0 12.7 1,022 1,400 2,422 710
; 80.0 19.2 16.3 16.2 13.8 801 475 1,276 201
: 70.0 141 12.0 2L.5 18.2 002 809 1,211 226
11,000 pounds or 3.86 pounds per 80.0 10.7% 8.15 213 1.1 608 735 1,343 256 .
BQUALS f00errane cnevrncanenens] 90.0 8.48 7.28 18.2 15.6 T12 w87 1,649 396 ~
100.0 G.90 |. 5.86 15.2 9 854 1,151 2,008 535
110.0 5.70 4.84 13.0 11.1 990 1,400 2,398 702
[ 50.0 22.6 19.2 9.2 7.8 1,152 1,517 202 .
: 80.0 18.7 1.3 20.6 17.5 515 476 930 158 .
9,000 pounds or 4.30 pounds per ; 70.0 11.5 9.79 21.8 18,4 491 609 1,100 208 .
SQUBL® T0O +n e e maees e meemramen ¥ 0.0 (%] 7.5 186 15.8 570 5 1,305 278 s
. 60.0 6.97 5.92 15.4 18.1 636 037 1,623 390 -
100.0 5.68 4.80 13.0 LI 815 1,151 1,968 524
L 110.0 4.68 3.07 11.2 0.5 46 1, 4 2,346 639
2.7 24.0 20.4 6.6 5.6 1,250 270 1,520 173
50.0 17.6 14.9 18.8 16.0 439 365 804 107
60.0 12.8 10.4 2.8 18.5 878 475 863 136
7,000 pou.nds or 8.74 pounds per 0.0 0.02 - 1.65 10.2 18.3 420 609 1,038 194 .
square f00t..cmeseeiaeenennncasd! 80.0 6.85 5.54 13.1 12.8 547 33 1,082 b}
90.0 b.44 4.62 12.5 10.8 880 937 1,697 3
100.0 v4. 41 8.M 10.8 8.0 77 1,151 1,928 814
L 110.0 3. 3.00 8.4 7.1 981 1,400 ¢ 2,391 698

N T

CONDITIONS FOR MAXIMUM RANGE.

1t is evident that the work rejuired to fly a given distance, being the produect of the total
resistance, or required propeller thrust, by the distance, is least when the thrust is kept at its
minimum values. The points of minimum drag were, therefore, located on the resistance curves.
These points determined the most econommal speeds and the corrwpondmg required powers.
The powers thus determined are seen not to be minimum powers. The minimum powers are
but slightly less than those corresponding to minimum resistance and oceur at speeds slightly
less then minimum resistance speeds. The minimum power is that for which the fuel con- - R
sumption is least for a given {ime and as it turns out, is nof the most economical power for
flying the greatest distance. The speed corresponding to minimum power is the speed at which _
a machine should fly in order to remain aloft the greatest possible time. S
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In figure 2 the weight of the maclune is plotted against m1mmum reeustance ~ The curves _
in figures 1 and 2 show that— - P T T T T

1. The maximum range speeds decrease as the load decreases. The plane must fly slower '
and slower as the load diminishes.
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. The maximum range powers decrease as the load decreases.
‘3 These powers are not minimum powers but are shghtly greater aud correspond to greater
speeds than least power speeds.
4. The totul air resistances decrease almost in exact proportion to the weight of the plane.



A STUDY OF AIRPLANE RANGES AND USEFUL LOADS. 9
FUEL CONSUMPTION,

The fuel consumption at maximum brake horsepower output is taken as 0.6 pound per
horsepower hour, and for any reasonable throttled condition this number is increased to 0.7.

The available horsepower curve was obtained in the usual menner by assuming proper
propeller efficiencies at slow and high speeds and multiplying these into the available brake
horsepower. The fuel consumption per horsepower delivered by the propeller can therefore
be computed by dividing the fuel consumption per brake horsepower of the metor by the
propeller efficiency at that speed, or what is the same thing, multiplying 0.6 by 800 and
dividing by the anvailable horsepower at that speed. As mentionad above, these results are

multiplied by % in order to compensate for a slight loss of efficiency under throttled con-

ditions. This procedure corresponds to experimental tests and if anything probably over-

estimates the fuel consumption.
With these data Table 2 and figure 3 wers made. The fuel consumption is seen to be

proportional to the weight.

Warght - Lbs,
L e B i WY
|EFECT OF WERGHT iarraY 8 et 00T Y|
ooz Hoe S/ Cornsuemiolion of e K000 L8 T
damba-.A Velbes Jesiabia Z
7 - Ualocily-consumadirr. —
- i

)

oo hr,

v
el

-

Gasaline consurmplian - Lb.
-
hN
\

] & 3 I3 y r 2
Leonamical vefocHy of odvarxe - mphi.

Fig. 8.
TaBLE 2.—GFas consumption in pounds per hour at the economical speed.

Corresponding QGasoline
' horsepower. o Total
i on
Minimpm | L/D.or |Correspond 0.7%S0 | gasoline
Weight of ing speed X
machine, total weight/ | ‘DB T avall, BL.p,| egnsnap-
resistance. | tof. Tes. per hour in pomnds] tion per
* | Required. | Available, per horse- hour,
power.

Pounds. | Pounds. Pounds.
15,000 | 1,560 9.62 7.5 30 603 0.927 296
18,000 1,372 0.47 7.5 265 583 . 990 254
11000 1,105 0.2 88.7 213 855 1.008 214

8,000 992 9.08 50.6 150 517 1.082 172
7,000 795 .82 52.5 07 472 1187 iz

TaABLE 2a.—(Cas consumption in pounds per hour at the mazimum speed.

Corrasponding Gasoline

horsepower. cunmmmn p- Total
Weight of | Mnimum | L/D.or Comr;espond- nj;xsbo gasoline
% total weight/ ﬁed avall D, | consump-
machine. §reqistance. | tot. res. ﬁtgr il o Doandsj| tlom per
Requured. | Avaflable. per horse- hour.
power.
Pounds. | Pounds. Pounds.
15,000 2,%5 6.63 105.4 636.0 638.0 0.758
, 000 2, 260 5.76 1065, 9 ] 685.8 785 430
11,000 2,245 4.91 106.3 635.0 635.0 766 £30
9,000 2,225 4,05 108.8 634.9 634.9 766
7,000 2,225 3.16 106.8 634.8 634.9 756 450

144187—20——2
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Figure 4 shows a curve giving the relation hetween the weight at any time and the carre-
sponding distance flown. Starting with a full fuel load of 7,870 pounds, giving a total weight
of 15,000 pounds, the machine was assumed to travel for a givon time interval (two hours)
at the weight, speed, gas consumption, and thrust corresponding to that woeight, During the
next two hours it was assumed to fly at new values corrosponding to the new weight which
is equal to the old weight less the fuel consumed in the preceding timoe interval, and so on.

M N O A Y
EFFECT &F OSTANCE
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\ mogteconormical spead ofoavarice.
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=T \ Jwedzsates\ o

§

3

3

Decrease inGrossWeighfdue fo Gasoline Consurnpfion

\t‘
E
N

§

%
L7

a0 AT G0 A R 0 MY T 0 a0 20 A
Distance-~ miles

Fig. 4.
Tasre 28.—Ratlos of L{D and angles of incidence for mazimum range,

g

MAXIMUM RANGE BPEEDS.

! Velocity, 1o of
. Loadin Biplane 2 | Biplane, [Monoplane
| pds.fsq. f. L/D. mﬂeh car | Ryx 100 | KyX1. deggmm.
| e
| 800 15.55 7.5 13.3 18,85 5.3
C 692 15.63 12.5 82 15.58 5.2
| &8 15.63 8.7 13.15 15.50 5.2
v 480 15.38 50.6 s 15.90 5.45
;. am 15.30 525 13.65 1595 | &5
L . . S - - ==
HIGH 8PEED

Leading | Biplane g‘i’%g"'“y-' Biplane, |Monoplane, leof '

P

X 3 per once
l pda./sq. L. JD. hour. nym«._ Kyx1 degress.
E

e | ur Bl |
[ &8 1.6 "106.3 517 | &m 0.7
o480 10.03 108.8 421 4.9 3
| 374 3.00 106.8 3.9 E]
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TasLr 3.— Time-weight vartation computation for speeds.

MAXIMUM RANGE.

k- ;L (-] » -

Inigh % o | veloctty Gasolin Distance, miles Gasollne i

Wel Thrus - | consum; consumed Time

of machine | In pounds lnr:gzijlg pmmds;g’r Ininterval.] hours.

in pounds pe * {" hour. S=Vt. Total. | Pounds.
15,000 1,560 71.5 207 155.0 155 504 2
14) 406 1,500 76.3 286 152.6 307.6 572 4
18,834 1,450 74.9 213 140.8 457.4 545 6
13,288 1,403 73.3 261 146.6 604.0 8
12,766 1,355 7.3 250 142.6 746.8 500 10
13,266 1,805 70.5 310 141.0 S87.8 450 12
11,758 1,265 9.0 $38.0{ 1,025.8 480 14
11,328 1,225 67.5 220 186.0 1,160.6 40 16
10,836 1,183 66.2 210 182.41 1,203.0 420 18
10,466 1,145 847 201 190.4| L4224 402 20
10,084 1110 63.5 127.0| 1,540.4 388 2
9,678 1,085 62.2 184 24.4] 1,673.8 368 u%
9,310 1,030 61.0 177 122.0] 1I,7958 364 2
8058 995 50.7 169 119.4| L9152 838 28
8 618 965 58.6 182 17.2| 20334 324 30
8,204 930 57.4 1n4.8| 21472 310 32
7,084 900 56.3 118 126 2,250.8 206 |- 24
7,688 72 35.1 142 110.2| 237.0 P 26
7,404 840 541 136 1082 24782 a72 38
7,182 815 5.3 132 106.6 | 2.5%4.8 264 0

The maximum possible range is seen to be 2,480 miles under these conditions.
DETERMINATION OF THE MAXIMUM LOAD FOR A GIVEN OBJECTIVE.

Evidently in case a return trip is to be made without refueling the greatest distance for
an objective is equal to or less than haif this greatest range. Itiseasy to determine the greatest
possible useful load by means of the weight-distance curve, figure 5, in the following way:

fdﬂﬂa dd
/ \—-
N
, LY
.g D=
1)
2 D
SN
LS B PN T
y ! c Werght Lmply i< ‘
! i
éoost—— 6% — — 600
e &§00 Range in miles. /0 W17
Fig. 5.

Suppose the objective is 600 miles distant. It requires AB-CD pounds of fuel to get
there and GF pounds to get back after the load is deposited. Since the maximum load is AB
pounds there will be left DE or D’E’ pounds for useful load. Calling the maximum range S,
project the points on the curve for s=600, point D, and §=S—600, point F, on the weight
axis, the weight included between these two points is the maximum load for that objective.
This procedure is quite general. The load decreases to zero as the objective distance increases
to half the maximum range and increases to the maximum load as the objective distance
decreases to zero.
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A curve (fig. 6) wes determined by this method for this machine which gives directly the
maximum useful load for any objective. This curve turns out to be practically a straight line.
A proof that it should be very approximately straight is given in Part II.

s NEEEEE
.,\\ B0V LOAD CUMVE 1
N 2% o Qe pe |
- S|
\ oy e,
N

e o '\' —r
e R
- i \\
= o e o

Fig. 6.
CONSEQUENCES OF FLYING AT MAXIMUM SPEED.”

In Table 2a the results for flight at maximum speed are tabulated. The gas consumplion
is constant and the speed of advance was found to be constant to within about 1 per cent. The
average value, 106.2 miles per hour was, therefore, used in the computations.

The weight-distance curve (fig. 4) is a straight line, as the fuel consumption and speed are
very approximately constant. ,

The meximum range is considerably less than under greatest range conditions. The dif-
ference is 740 miles. A considerable gain in range is thus atteined by flying at the proper
angle and hence at proper spesd.

The useful loads for maximum speed are considerably less than under bestrunge condi-
tions. For an objective 600 miles away the best conditions give a possible load of 4,050 pounds
while at maximum speed this is reduced to 2,430 pounds, & reduction of 1,620 pounds.

For convenience, a comparison of the loads and ranges corresponding to them is made
in the following tables:

TaBLE 4.

P o i e i
! -Rango at maximum ;
| Hoursof | Bombing - gpead. Range at best speed. Differance lln n.atles.
fuel tall loed in :
| open. pounds, ; . '
: Total. | Objectlve.|{ Total. | ObJective.| - Total. | Objective.
| ] N . ha
| 10 3,070 1,080 530 1,510 st 4ol 2%
! 73 4,270 790 | 335 1,180 565 340 170
i 4 &, 950 420 210 610 305 190 a5
! - - i e 2 R LT e el
TasLE b.
.I H Renge. Bombing. | Bombing i .
. fu?]lﬁz?l - k ll;és.udi gﬂ!emr&ce :
maximum unds. - z
| open. Total. | Objective.] speed. speed, poma ]
] - .
' 10 1,510 755 1,030 s,0m| 32,040
b 1,130 . 2,738 4,570 1,633
) 810 305 5, 060 5,050 850
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For the shorter flights the differences decrease but they are considerable in all cases. The
bombing load is increased by almost 190 per cent for maximum range speeds over maximum
speed conditiéns for 10 hours fuel.

FLYING AT MINIMUM POWER.

The gas consumption at minimum power is practically identical with that at best range
power. While the minimum power is slightly less than the power for best range speed, the
speed is also less and the propeller efficiency is also slightly less. The net result is that the time
of flight is about the same and the maximum range is diminished:

A calculation of the range at minimum power gives 2,400 miles instead of 2,480 miles.

For flight at minimum power the angle of attack is practically constant and slightly greater
than that for best range speed.

TIME REQUIRED FOR ANY RANGE.

For convenience, the curves of elapsed time for any distance flown are given in figure 4
for both best range speeds and maximum speed conditions. By means of them the time of
going and returning from any given ob]ectlve may be read off. In particular it is seen that
the meximum time of flight under high speed is 16.4 hours as against 38.0 hours for best range
speed.

For a bombing raid on an objective at 600 miles, the total elapsed time to go and return
is for maximum speed 11.25 hours and for best range speed 18.65 hours. It will be seen in the
fo]lowmg how this time difference may be decreased by ﬂymg at hlgh altltudes without chang-
ing the efficiency for best range conditions.
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PART 1II.

THEORETICAL ANALYSIS.
By J. G. CorriN.

THEORY OF MAXIMUM RANGE CONDITIONS,
Notation: '
W =weight of machine at any time. :
W: =weight of machine fully loaded with fuel.
W =weight of machine empty of fuel.
= thrust of propeller.
=efficiency of propeller.
= supporting wing area.
=gpeed of ﬂ_lght
=lift per unit wmg area per unit speed at ground level.
=drift per unit wing area under same conditions.
=parasite resistance per unit wing area under same conditions and is assumed
constant,
and D depend opnly on the flying angle of atta.ck
=distance traversed in time £.
=range.

2 »n*® t“ HOrges 3

=% =ratio of the density of the air at height % to its density at ground level.
¢ =pounds of fuel (gas and oil) per brake horsepower hour consumed by motors.
a=%=pounds of fuel per useful horsepower hour delivered by propeller.

The lift oocefficient K,, as usually given, is proportional to the density, and we may, therefor:
write .

Ky = kyP = (kyPo)‘p/po =L

where L is the value of K, at ground level.
The fundamental equations for horizontal flight of the anrplane are

W=LyAV? (1
7 YL =DyAV:+ RyAV?= (D+R)yAVs )
CONDITION FOR MINIMUM WORK,

The work done in flying a distance d against—a total drag T is Tdl. The total work done
in flying a given distance s is, therefore,

Work= f ’ Tdl

This work integral is evidently a minimum if T is always at its least possible value.
14
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From equations (1) and (2) we get by division
D+R '
TmW( —L—) @)

This equation shows, since v has disappeared, that for a constant angle of attack and given
weight the thrust is independent of the height at which the flight takes place, and also that for
a constant angle of attack the thrust is proportional to the total weight.

Tt is for the first reason that no mention of altitude was made in Part I. The second
statement is verified in figure 2, which plainly shows very approximate proportionality at all
actual flying speeds.

Itis convenient to employ the polar diagram in the following: This kind of diagram
deserves greater popularity than it has yet received in aeronautical calculations in the United

tates. It consists in plotting Li as ordinates against D as abscissae. Any point M on the
curve corresponds to a given L and D and hence to a given angle of attack. This angle of
attack is marked on the curve.

L

Lay off from O the distance OQ equal to R. _ ) -
Then for any point M, OB=D, MB=L, and 0OQ=R. -

The slope of the line QM=-DI:;_R tan o

Consider equation (3). For a given weight and veriable values of L and D, that is, for
variable angles of attack, let us find-the condition for minimum thrust.

gr—0-L@D)=D+R) dL

As L can not be infinite, the condition is

dL L
dD"DIR “
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That is to say, for minimum thrust the tangent to the polar curve must have 2 value D%l-i'f{'

Looking at the polar diagram it is seen that the line QM, tangentat M, fulfills this condition
and corresponds to a given angle of attack {,. Since the polar is a given curve for the machine, it
follows that -
(@) for minimum thrust the machinie must fly at & constant angle of incidence through-
out the whole flight whatever the loading may be, and
(b) that these minimum thrusts are independent of altitude of flight.

In Part I, Table 2B, the angles of incidence corrgsponding to the least drag have been
tabulated. They are remarkably constant, their average deviation from the mean 5.33° being
only 0.12° and the greatest difference 0.3°, .

For best range speeds, then, it follows that

W =CyV? where C,=LA (5)

and
T=CyyV? where C,=D+R)A . = . U () I

where C, and C, are constants for flight at any constant angle of incidence. In particular for

maximum range conditions they have the values corresponding to the maximum value of Iﬁﬁ

for the machine. _ _

Let us suppose that the machine loses weight gradually due to fuel consumption alone.
If the welgh’o-dlstance curve can be deduced, the problem of bombing loads and ranges is
solved, as explained in Part I.

DEDUCTION OF THE WEIGHT-TIME EQUATION.

Assume that the range of speeds is such that the engine runs at constant efficiency, burning
pounds of fuel per horsepower hour delivered by the propeller If e=pounds of fuel
consumed per brake horsepower hour and the propeller efficiency is denoted by 3, then the

(t n

fuel consumed per horsepower hour delivered by the propeller is given by a,~=% S

The power at any speed is

1
PV = Cyy VeV = C,'y(gv ) - ok Lo v o

The rate of fuel consumption is ¢TV and in time d¢ a weight aTVdt of fuel will bo con-
sumed, hence

. |
aTVit= %—gl,Ltht—- —dW ®)

where —dW is the loss of weight of the plane in time dt.
The weight of the plane at any time ¢ is therefore, if W/, is the weight full,

W=W,— TTftW dt )]

Equation_(8) is & differential equation for W at any time, and may be written
. daW e C, .
W 7; aﬁ;dt— Kdt (10)

a C
whereK==7’=§ 077:2' e N 0 5 )

T e it



A STUDY OF ATRPLANE RANGES AND USEFUL LOADS. 17

Solving and determining the constant of integration by the condition that when {=0,
W=W,;, we get
1 K 1
—— . _ - (12
VW 2 T W, 42

This equation is the desired relation between' W and ¢ and shows how the load diminishes as ¢
increases. Since K contains v, the rate of diminution of load depends upon the altitude. .

The time of maximum flight can be obtained by letting W, decrease to W,, the weight of
the empty machine.

‘m“=%(vlﬁ,‘7%,) (13)

This maximum time of flight computed with equation (13), using 1.03 pounds per horse-
power hour as the average fuel consumption, gives a value of #n.:=38.8 hours, as compared
with ¢z =38.0 hours as taken from the time-weight curve in figure 4. The two methods again
check very well. The formula arranged to give the time in hours is, for low levels,

1

1
t (hours)= 10550 ( - )
VWE JWg
This time of flight diminishes proportionally to +/y.
DEDUCTION OF THE DISTANCE-TIME EQUATION.

The distance traversed in time df is, using (5).

ds=Vdt= CE dt
1Y

1 t
= dt
s ¥ 017-’; '\/-W

t K
2 1| 3¢
K or | K,, T
._+_
2V,

Integrating and determining the constant by the condition that when {=0, s=0, we get

go that In time ¢

which becomes, using (12),

8=

2

This equation is the desired relation between the distance fown and the tinre. The distance :
increases with the time and depends upon the altitude of flight. For a given time interval the o - T

distance flown increases proportionally to %

DETERMINATION OF THE WEIGHT-DISTANCE EQUATION,
Eliminate ¢ between equations (12) and (14):

1
2 W LW
TEGY " 1TRIG EW “
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where .
1 _ACM 6 L L e
K+Cy aC,/Cy aC, ¢ D+R
So thet finslly T

"% YR - 8 an
This equation is true for any condition of flight at constant angle of incidence, where the ratio

L remeins constant. For maximum range the maximum value of L is of course used
D+R ' " D+R Bt

This equation shows that as W diminishes s increases, and that the distence flown is independent
of the flying altitude, since v has disappeared.
The maximum range S can be obtained by finding the value of s for W=W,.

Assume W,=15,000 pounds.
W.=17,130 pounds.

L\ _gq-
M&x- (m_) - g'z
S =2,480 miles.

We obtain for “a” a value of 1.03 pounds per horsepower hour. .

This value checks very well with &=1.033 pounds per horsepower hour, the average value
used in the preceding greatest range calculations, in P art I.This checkis very satisfactory and
shows that the twa methods are in good agreement.

EQUATION CONNECTING USEFUL LOAD AND OBJECTIVE DISTANCE.

If we let b=(—1~ T—I}-‘R equation 17 becomes B

s=blog %
and hence
W =W (18)

Considering Fig. 5 it is easy to see that the load B for any given objective at distance s is

evidently, if S=max. range
B =W,——Ws—a =Wf(e—"’b—e_(s—°)’b) (19)
and since We= We—% this becomes

B=We— W,et : 20)

We can thus compute the uscful load for any objective. If the weight distance curve is. .

plotted, however, it seems easier to plot the curve represented by (20) by the method explained
above.
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PROOF THAT LOAD-OBJECTIVE CURVE IS STRAIGHT,

In Part I the curve between useful load and distance to objective (Fig 6) was very approxi-
mately a straight line. The equation for this curve is _ -

B =W, (et — ¢—E—) (19)

where S is the maximum range, and s/b is a quantity which is smaller than unity and generally
less than 3.

This is not the equation of & straight line but turns out to be very closely straight as seen
by the following:

Let z =%‘, z, =§ for the moment.

Expanding the exponentials and neglecting cubes and higher powers of z, we have

2 —_
e"—e—<=i—=)=1—:c+%—|:l—- (&, —x)+ @7]

=(2 —zl)( -3+ %’*) & linear relatiqn. i
The second powers have completely canceled. _
Therefore W 5 S
£
— 2_$)<_8+_2-) . (21) i
Wher S
§=3 B=o
When

8=0 B':T 2—5)8

We—Wo= w,<.1— 3y = W,(l 14+5- —Sb-) W 2_§)§

so that the straight line (20) passes through A and B as it should.
The curve then is a straight Iine to a high approximation and can always be taken as such.

But

EFFECT OF CLIMB AT START AND GLIDE AT END OF FLIGHT.

If the flight is so made that the plane is allowed to climb steadily as the load decreases,
it must, of course, come down at the end of the flight when all the fuel is exhausted. The
potential energy put into the plane by the consumption of a certain amount of fuel is then
partially reemployed.in the descent. A slight calculation shows that it is puerile to consider
this effect, as shown below.

Assume that the plane rises under power to a height % with full fuel load and at the end e
of the flight descends with power shut off and without fuel. The potential energy which can not.
be regained is hence approximately the work done in raising the total weight of fuel to the
meximum height reached. As shown previously, the expenditure of fuel is about 1 pound per
horsepower-hour delivered by the propeller, which is equivalent to .

550X 60 X 60 =1,980,000 foot-pounds of energy per pound of fuel.

Assume 50 per cent useful load (all fuel), the work required to raise the plane to a height
h is
‘—g xk foot-pounds,

which is a considerably overestimsated value, as the climb is gradual, and the fotal fuel load is
not raised to the maximum height.
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Considering the specific machine used in Part I, the work done in raising 7,500 pounds of
fuel to a height of 10,000 feet, say, is 75,000,000 foot-pounds. This amount of work would
require

75,000,000

l—ggm"=38 pounds=6.3 gallons of fuel

(gas and oil), assuming 6 pounds to the gallon. As the total load is 1,250 gallons, this amount
is about one-half of 1 per cent of the total fuel load, which is quite neglmhle in calculations of
this nature.

As the percentage amount for any other type of machine would be about the same, we
have made no effort to. take this theoretically interosting part of the subject into consideration.

PRACTICAL SIMPLIFIED METHOD OF APPLYING THIS THEORY TO A SPECIFIC CASE.

The application of this theory to any specific case now reduces to the greatest simplicity
as follows: S
Data required. W;=weight fully loaded with fuel
W, =weight empty of fuel. .
i, =angle of incidence for minimum total resistance.
1. Calculate the maximum range for an all fuel load by equation 17

. L
=25, J0B

and plot the value of S/2 as abscissa for an ordinate B=o.
9. Plot W;—W, as an ordinate for S=o0. _. . . .
3. Connect these two pomts by a straight line and we have a dlagram similar to tho fol-

lowing figure:

W%

BDombing Load

c

We

0é/e_cffre Distance _ _.2.
Fig. 8.

Any ordinate such as. CD will give the maximum pounds of load that can be carried for
an objective at distance OC.. The distance DE will give the corresponding weight of gasolme
to be carried. (See Fig. 6.)

For usual machines

S (miles) =375 I gg (D +R) Iogl,,( ‘ (29
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EFFECT OF ALTITUDE ON SPEED, POWER, AND TIME,

From equation (5) it follows that for a given weight the speed must inerease as v diminishes.

and the exact relation is
V, .
Vi=—4 . : (28)
[ 3l ’\/'Y
where % is the height characterized by v. From equation (7) it follows that the power required
for flight increases in the same proporation as the speed so that

Ph=%‘% ’ ’ (24)

This is otherwise evident as the thrust does not change.

From the latest experimental tests of motor horsepower and motor efﬁclency at altltudes |

" it is found that the power falls off almost in proportion to the density so that
Py'=P,y (25)

Hence, to fly at an altitude characterized by v, & power P,’ at the ground, which becomes P,,’»y.at
the height, corresponding to y, must be provided, such that

P,

Ply=—2 | . (26)

If the maximum available horsepower P, max. at the ground is provided, the plane will rise
until

P, ) _
. Po max. 'Y:?‘—/.? (27)
or to such an altitude as is characterized by
P 2
v=(pme) " @)

In order to provide a constant thrust the propeller must inerease in angular speed according

to the same law as the plane since propeller blades are aerodynamically similar to wings, so that

n=(RPM),.=£RL/¥Lr e e
VY

It follows immediately from this that since V and n increase in the same ratio then 17%

remains constant with altitude, and hence the propeller efficiency.

There are thus several reasons why flight at a high level will be better than at low.

(@) The motor ru.nmng full open will probably use less fuel per horsepower than has been
assumed for throttle, say, in the ratio of 0.8 to 0.7.

() The motor running at a higher speed can develop slightly more power with proper
adjustment, which will increase the height, and therefore the speed.

c) A very good third reason is that the duration of the flight will be considerably lessened
and this, together with

(d) the increased safety due to high altitude and greater flying speed lead to the conclusion
that: For bombing purposes the aviator should fly at a certain predetermined constant angle
of attack; he should allow the plane to rise as the load diminishes.

Since the work consumed in rising to the higher level is at lesst partially returned when

the machine glides down at the end of the trip without power, these works have not been con- -

sidered.

The aviator will thus attain the greatest range, carry the greatest load, secure the greatest
safety and speed consistent with these conditions and ecomomize in time as well.
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NOTE ON CEILINGS.

= (P,, iﬁg.)zl'

based upon the assumption P, = Py, the ceiling for any corresponding weight of machine may
be found if the available and required horsepower is known.
The following table of computations refers to the machine considered in Part I.

By employing the equation (28):

Table of ceiling computations,

! . Ceiling.
rsgia | bl Bt | _xone _
: = o R SR ®
. 15,000 600 | . 3w 0.858 12,500 | 10,330

18, 000 583 285 ~508 16, 000 13,900
l 11,000 555 212 .57 16,600 | 17,900
| 9,000 ! 518 18 .455 230800 ¢ 21800
| 7,000 | £ 1 .38 25’ 600 | 25,600

1

The column (¢) under the heading of ceiling in the above table has been obtained from a
y-altitude curve based upon data. obtained from report No. 14 of the National Advisory Com-

mittee for Aeronautics.
The column (b) under “Cellmg” has been obtmnod from data on the average performance

values of & number of machines. ) e

iy



REPORT NO. 69.

PART II.

EFFECT OF WIND ON RANGE CALCULATIONS.
By J. G. CoFrn. September 1, 1918,

BEST FLIGHT SPEED.

If there is a retarding or a helping wind it will be shown below that the conditions for
maximum range must be changed.

The following is a proof of an important method for finding the proper attitude of flight
with or without winds.

TI7

Vel Wind | 1o Wind

Fig. 9.

Let curve I be the required thrust-speed curve and II the required power-speed curve for the
meachine.
Consider a machine of constant weight W which is fiying with air speed V againsi a wind

speed w. The ground speed is then V—w

In order to fly a ground distance ds it will take a time dt—vdsw

If the thrust is T and *‘e” is the rate of gas consumption per delivered power the gas con-

sumed in flying this dlstance is . B}

ds
V-

As ‘“‘a’" is assumed constant and ds is fixed, for this expression to be a minimum we must

aPdt=aP (30)

have _ .

4 P _  (V-w)P- - i
av V—w_ V—w)
and since V — can not be infinite the condition is:

, P
Pr=vy—u
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This means that the subtangent to the power-speed curve is (V—w) and the equation is ful-
filled by the following construction: Lay off w, figure 9, on the V-axis, to the right of the origin,

if & contrary wind, or to the left if & following wind, and draw a tangent from this point to

'_\%E' For calm air the'tangent
is drawn from the origin. As the slope of & line drawn from the origin to any point on the P--V

the P-V curve; it is sean that the slope or tangent P’ is equal to

curve is always%=v—vrT——~T it follows that the thrust varies as the slope of such a line, and as

the tangent from the origin to the P~V curve has evidently _the,__min_imum slope, this shows

that in calm air the machine must fy at minimum thrust, as is otherwise evident.

Thus the minimum points of the T-V curves lie dlrectly over the pomt% of tangency of

lines from the origin to the P-V curves.

If there is a head wind this condition of minimum t,hrust no longer holds and more power
is required for most economic flight which corresponds, of course, to a greater thrust.

As the power curve is limited to the right by the maximum output of the power plant it
is seen that for economical flight there i is a limiting head wind corresponding to the distance
OH, where H is the intersection of the tangent to the P~V curve at its limit with the V-axis.
Tt is, of course, possible to make headway against stronger wmds, but the condition for eco-
nomical flight in such a case is no longer fulfilled. When w is a helping wind the tangent is
drawn from & point on the left of O and it is evident thaf as the followmg wind increases in speed
it pays to use less and less power, the limit for an infinite wind being minimum power. In other
words, it pays to let the wind carry the machine along with the least use of the power plzmt
Cunously enough, this corresponds to a thrust greater than the minimum which is proper in
calm air.

While for economic flight in calm air the machine must fly at minimum thrust and hence
at maximum L/D! for the machine for all loads, this smphcmy does not obtain for eco-
nomic flight in the wind. Not only does the L/D change for a given load with varying winds,
but also for a constant wind it varies with the load. Fortunately these veriations are small
for any reasonable head winds and for a change of load equal to the weight of the machine
empty. ‘Referring to figure 9, the proper L/D's for the machine and hence the proper angles
of incidence may be detelmmed by the methed demonstrated above,

Assuming a head wind of w miles per hour draw tangents to t,he required Tiorsepower

curves from abscissa+w. Read off on the thrust curves the thrusts cmrespondmg to the points
of tangency on the power curves, divide these thrusts by the corresponding weight of the machine
and the values thus obtalned are the D/L 8 correspondmg to economlcal flight under the

assumed conditioms. . . . - T SR

' SINGLE CURVE METHOD.

A nwch simpler method will now be described to accomplish the same result requiring tlhe
drawing of but a single curve for the whole procedure.
The method is based upon the following considerations:
The equations for horizontal flight may be written

W=LAV?
T=DAV?
P=TV
From these we obtain o L .
V=7£=A . W3 (31)
D
T=g-w. .. 32)
1. . D
I R 11 .
P VIE T 83)
—rr Mk I A o e e e T - S e

tin the following D reprosents the total drag on tho mag hlne nnd con:cpponds to (D+R ) in 1110 I:n cedlng pugo-.
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These equations show that as the load changes the corresponding speeds for any given
angle of incidence vary as W2, the thrusts as YW and the powers as WA, .

Consider now any required power-speed curve. Figure (9).

The required power curves for %y 1c;ﬂthe;r weight W, can be calculated from fshis3 §iven
curve by multiplying the speeds by (WL) =\ and the corresponding powers by <IT¥’1) =\"7
and plotting these values on the same sheet. If required the thrust curves can be obtained by

3f2
plotting %=$ \ against V12, '

Consider what effect a change in loading has upon the equation of condition for economical
flight.

@a__P_

avV V—uw
becomes for a new loading W,

' dP.N¥3 P
dVAE"VAB
where 7\=V%1
This reduces to
(dP P — e
/)= 20 .
V) V-im (

which indicates that instead of plotting P—V curves for various loads and drawing tengents
from the abscissa w it is sufficient to plot but one curve, and as the load increases draw tangents

from abscissas 7—\% as the load changes. The point of tangency determines values of P and V

which correspond to a required power P A¥2 and a flying speed V A2 for the new condition,
As the main interest here is to find the variations in L/D, or, whatis the same thing, in D/L,,
we continue as follows: :

32
Since %=%§ is the new corresponding thrust, and since the new thrust divided by

the new load W, gives the new D/L, it is seen that

Lo\
V' _T_T _<12), (35)
W, W, W \L/,

and hence in order to determine the D/L for any new loading it is merely necessary to draw a -

tangent from )%,, and the ratio % read off on the original scale is the corresponding value of

the % required.

This single curve is preferably plotted for some simple load such as 1,000 pounds or 10,000
pounds. The D/I’s will then come out directly by dividing the power by the speed, and by
changing the position of the decimal point.

EXAMPLE OF USE OF THE ONE-CURYE METHOD.

In order to check the proposed method ageinst the usual multicurve method, three P-V
curves were plotted for the same machine with loads of 7,000 pounds, 10,000 pounds, and 13,000
pounds, respectively. The machine weighs 7,000 pounds empty.

These curves.are shown in Fig. (10). The L/D’s for various wind speeds were derived from
them and compared with the L/D’s taken from the 10,000-pound curve using modified wind
speeds as described above.
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The agreement is very satisfactory, as shown in the table (6} below.
+ When using the curve for a 7 OOO—pound load the modified wind speed.s corresponding to v

are . . D N Te I Y — . . Lew. L -
\/—=1 195 w '
\/ m= 877 W

and for a load of 13,000 pounds they are

" RENE
. ztrwmfﬂ H‘PCM?I;ES
oV " Mﬁfadn/ e AOVINIG VO voUs
0 ) _ - V.
’?M/b' - - : /‘{/
w PN : )74
t HENBERRD
7
S \ N T
b o i 4
;; v A ||
» i3 f AT
N | |
A —f
& 5 ® X & -' % 2 o
Velocily - mp .
Fig. 10.
TaBLE (6).
— i
“’,‘I‘\fg’ D from | LyD from | Modified | L/D direct LD from | LD from Modified
spoeds 10,000- | geds 10,000- 13,000- 10,000- | S5
T mites " p? P- ound 0sed, 1195 | pound P gound r Q""nd used, 0.877
per hOU!‘ ? ouno, ourve. 0. curve, _ curve. curve. w.
i _ -
; 7 (ra (15,000
X : p‘(m’ag.) . 1'1da) pounds.)
—40| 8.25 841 —4i80 84 £.35 88! —25.08
-2l 8.35 837 —=:390 8.35 8.38 24) -17.83
0 84l 8.43 0. 7 843 g4 a
1o| Vil 843 1195 g4l 8.41 2 877
20 8.20 &31 2390 832 g41 8.42 17.53
3| 804 8.03 3.5 L1 £35 &35 26.60
40! 7.47 T. 45 47.80 7.9 8.04 807 35.06
5 ! 5.95 5.9Q 50.75 .41 7.62 7.60 3.82

-Several interesting results appear from the values obtained.

1. The influence of wind on the L/D is greater for light loads than for heavy. A change
in L/D from 8.43 to 5.90 is found for the 7,000-pound machine as against a change from 8.43 to
7.60 for the 13,000-pound machine, these values corresponding to a change in head-wind speed
of 50 miles per hour.

2. This influence still holds although much less noticeably for helping winds, the 1/D
changing from 8.43 to 8.30 for the light machine as against 8.43 to 8.34 for the heavy machine,

3. For any reasonable head wind that could be flown against in long-distance flight, the

change in the L/D is small, running from 8.43 to 8.00 for the 7,000-pound case to 8.43 to 8.25 =

for the 13,000-pound case, these values corresponding to a head wind of 0 and 30 miles per hour,
respectively.
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As practically it is difficult to fly at a given angle with mathematical accuracy the main
result of these figures is to show that as the head winds increase in speed it is necessary to slightly
diminish the ﬂymg angle; ‘exactly how much depending on a preliminary calculation as out-
lined above.

The instructions to the pilot ean be given in either of two ways:

(a) Proper flying angles for any given wind.

(b) Proper air speed for any given wind.

3 g
' 1 _
Lvarmrion v
= S
\Q 2
4 N &, 8
\ 22N
RS CANIAN
_ - < A ‘\\

£ (7 Z l For mmactiines havi L
5 Witl loadling ard wiind speed | IV Sl s i ag.? 7 v

L~
4/
o~

] - 6
50 -4 7 20 -0 0 0 20 30 0 .
- Wind Speed- rm.p.f.
Fig. 11.

A plot of the values of L/D against wind speeds for the three loadings is shown in figure
(11). These L/D values correspond to definite air speeds at & given altitude and definite angles
of incidence which can also be placed upon the plot. Such a chart will give with sufficient
exactness the proper flying angles for practical navigation under economical conditions.

RANGE FORMUL/E INCLUDING EFFECT OF WINDS.

The time-weight equation (13) |
2
=x <7= )
-G
1/‘ Ca;z

is naturally unchanged, since for a given angle of incidence the fime in which the fue! is consumed
can not depend on whether there is & wind or not.

Where v

P‘J



28 ANNUAL BEPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICE,

The time-distance equation must be modified. Since the ground distance is the important
factor the wind modifies the range. If at any instant the air-speed is V and the wind speed w,
the ground speed is V—w, and in time d¢ a ground distance

dS=(V—w)dt (36)

will be covered. With an obvious.substitution, this becomes

dS=,/§V;dt—w at ' |

and

_V_I W% dt— fwdt

Using equation (13) this becomes

t K
7% di=22
“27?]{ E K. .1 "} “"g 1y

t+T

The constant of integration log Cis determined by the condition that when =0 S=0
and

log,(K t+ —Ff) wi+log C

]

log Cmm 2k log, - 1
K :/Cl'y ‘W,

so that finally

Eliminating ¢ and giving K its value we have

()10 B2 (25 (e

The 1/D which appears in this equation is an average value given by the preliminary caleulation
28 in Table (6) corresponding to loads and wind speeds for which the range is desired.

It would, of course, be possible to introduce an empirical expression for L/D in terms of W
which could be integrated, but no practical advantege would acerue on dccount of the impossi-
bility of obeying the mathematically exact conditions in actual flight.”

The expression (31) for S can be put into either of the following forms by simple trans-
formations: : ‘

s=3 (5)ros ¥ ( )(V v
( )lo
-3 (5) [‘°g ¥-o(y-v)]
-2 (5) e W3 v(7-77)

In all of these expressions the altitude of flight is assumed to be substantially constant.
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SUMMARY.

The relation between useful load and range has been worked out by two distinct methods.

Part I employs no new theory and is made by the usugl performance estimate methods. It
would involve considerable plotting of curves and is cumbersome.

Part II gives a theoretical solution. This solution checks remarkably well with the pre-
vious one in every particular. It leads to an elegant and simple solution for any specific case.

Directions are given for the application of the results of this paper to any machine. The
total time required for this complete calculation should not take over 15 minutes.

The results of interest for calm air are:

1. The machine should fiv at a constant angle of attack, the angle corresponding to the

Weight
Total resistance’

2. It is practically immaterial whether the machine flies high or low as far as range is
concerned.

3. There is an advantage in flying high in that thé time is much reduced.

4. The resistance is proportional to the weight at a given altitude.

5. The result of flying 2t maximum speed is & very much diminished range, ot for a given
range & very much diminished useful load.

6. The result of flylng 2t minimum power is to slightly reduce the range.

7. The times of flight at the same level for fiying at best range speed and at minimum
power speed are practically the same.

8. The condition for best range is shown.

9. The weight-time curve is deduced.

10. The range-time curve is deduced.

11. The weight-range curve is deduced.

12. The effect of altitude has been taken into account.

13. The time is greatly diminished for flying at corresponding levels.

14. The theory checks closely with the ordinary methods of Part I.

Part III gives a theoretical solution of the effect of wind on range. First, a proof of a
method for determining the L/D and air speed for the machine under any wind conditions ig
given. A new method is shown wherein but one P-V curve is required for any load and any
wind speed.

Variations in I/D for changes in load and wind speed are derived and checked against
the usual methods.

The weight-distance formula is derived as modified by winds.

The results of interest for flight in winds are:

1. The angle of attack changes but slightly when flying against winds of reasonable
strength, and but very slightly when flying with winds of any strength.

9. The altitude of flight affects the range. The reason being that higher speeds are attained
at higher altitudes and the ratio of air speed to wind speed changes. However, as wind
speeds change with altitude it does not seem worth while to go into the matter more fully.

8. Other things being equal, it is slightly a.dvant.afreous to fly high, especially as to time
af flight.

4. The weight-time curve is unchanged.

5. The range-time curve is deduced.

6. The weight-range curve is deduced.

minimum value of



